Optimization and coordination of SVC-based supplementary controllers and PSSs to improve power system stability using a genetic algorithm

نویسندگان

  • Ali Darvish FALEHI
  • Mehrdad ROSTAMI
  • Aref DOROUDI
  • Abdulaziz ASHRAFIAN
چکیده

In this paper, a lead-lag structure is proposed as a main damping controller for a static VAR compensator (SVC) to diminish power system oscillations. To confirm the transient performance of the proposed controller, it was compared to a proportional integral derivative (PID) damping controller. Power system stability improvement was thoroughly examined using these supplementary damping controllers as well as a power system stabilizer (PSS). The generic algorithm (GA) is well liked in the academic environment due to its immediate perceptiveness, ease of performance, and ability to impressively solve highly nonlinear objectives. Thus, the GA optimization technique was applied to solve an optimization problem and to achieve optimal parameters of the SVC-based supplementary damping controllers and PSS. The coordinated design problem of these devices was formulated as an optimization problem to reduce power system oscillations. The transient performance of the damping controllers and PSS were evaluated under a severe disturbance for a singlemachine infinite bus (SMIB) and multimachine power system. The nonlinear simulation results of the SMIB power system suggest that power system stability was increasingly improved using the coordinated design of the SVC-based lead-lag controller and PSS, rather than the coordinated design of the SVC-based PID controller and PSS. Furthermore, the interarea and local modes of the oscillations were superiorly damped using the proposed controller in the multimachine power system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Damping Enhancement via Coordinated Design of PSS and FACTS-Based Stabilizers in a Multi-Machine Power System Using PSO

This paper investigates the enhancement of power system stability via coordinated design of Power System Stabilizers (PSSs), Thyristor Controlled Series Capacitor (TCSC)-based stabilizer, and Static Var Compensator (SVC)-based stabilizer in a multi-machine power system. The design problem of the proposed stabilizers is formulated as an optimization problem. Using the developed linearized power ...

متن کامل

PSSs and SVC Damping Controllers Design to Mitigate Low Frequency Oscillations Problem in a Multi-machine Power System

This paper deals with the design of multi-machine power system stabilizers (PSSs) and Static var compensator (SVC) using Modified shuffled frog leaping algorithm (MSFLA). The effectiveness of the proposed scheme for optimal setting of the PSSs and SVC controllers has been attended. The PSSs and SVC controllers designing is converted to an optimization problem in which the speed deviations betwe...

متن کامل

A PSO-Based Static Synchronous Compensator Controller for Power System Stability Enhancement

In this paper Power system stability enhancement through static synchronous compensator (STATCOM)based controller is investigated. The potential of the STATCOM supplementary controllers to enhance thedynamic stability is evaluated. The design problem of STATCOM based damping controller is formulatedas an optimization problem according to the eigenvalue based objective function that is solved by...

متن کامل

Simultaneous RPD and SVC Placement in Power Systems for Voltage Stability Improvement Using a Fuzzy Weighted Seeker Optimization Algorithm

Voltage stability issues are growing challenges in many modern power systems. This paper proposes optimizing the size and location of Static VAR Compensator (SVC) devices using a Fuzzy Weighted Seeker Optimization Algorithm (FWSOA), as an effective solution to overcome such issues. Although the primary purpose of SVC is bus voltage regulation, it can also be useful for voltage stability enhance...

متن کامل

FACTS Devices Allocation Using a Novel Dedicated Improved PSO for Optimal Operation of Power System

Flexible AC Transmission Systems (FACTS) controllers with its ability to directly control the power flow can offer great opportunities in modern power system, allowing better and safer operation of transmission network. In this paper, in order to find type, size and location of FACTS devices in a power system a Dedicated Improved Particle Swarm Optimization (DIPSO) algorithm is developed for de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012